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ABSTRACT: A global multimodel probabilistic subseasonal forecast system for precipitation and near-surface tempera-
ture is developed based on three NOAA ensemble prediction systems that make their forecasts available publicly in real
time as part of the Subseasonal Experiment (SubX). The weekly and biweekly ensemble means of precipitation and tem-
perature of each model are individually calibrated at each grid point using extended logistic regression, prior to forming
equal-weighted multimodel ensemble (MME) probabilistic forecasts. Reforecast skill of week-3–4 precipitation and tem-
perature is assessed in terms of the cross-validated ranked probability skill score (RPSS) and reliability diagram. The multi-
model reforecasts are shown to be well calibrated for both variables. Precipitation is moderately skillful over many tropical
land regions, including Latin America, sub-Saharan Africa and Southeast Asia, and over subtropical South America,
Africa, and Australia. Near-surface temperature skill is considerably higher than for precipitation and extends into the ex-
tratropics as well. The multimodel RPSS skill of both precipitation and temperature is shown to exceed that of any of the
constituent models over Indonesia, South Asia, South America, and East Africa in all seasons. An example real-time
week-3–4 global forecast for 13–26 November 2021 is illustrated and shown to bear the hallmarks of the combined influen-
ces of a moderate Madden–Julian oscillation event as well as weak–moderate ongoing La Niña event.

SIGNIFICANCE STATEMENT: This paper develops a system for forecasting of precipitation and temperatures
globally over land, several weeks in advance, with a focus on biweekly averaged conditions between three and four
weeks ahead. The system provides the likelihood of biweekly and weekly conditions being below, near, or above their
long-term averages, as well the probability of exceeding (or not exceeding) any threshold value. Using historical data,
the precipitation forecasts are demonstrated to have skill in many tropical regions, and the temperature forecasts are
more widely skillful. While weather and seasonal range forecasts have become quite generally available, this is one of
the first examples of a publicly available, calibrated multimodel probabilistic real-time forecasting system for the sub-
seasonal range.

KEYWORDS: Climate prediction; Ensembles; Forecast verification/skill; Forecasting; Forecasting techniques;
Probability forecasts/models/distribution

1. Introduction

The development of skillful, well-calibrated, multimodel
subseasonal probabilistic forecast products is still in its in-
fancy compared to the weather and seasonal forecast ranges

(Robertson and Vitart 2019). Previous work has examined
whether probabilistic forecast skill can be enhanced through
effective calibration and by multimodel ensemble techniques,
as has been demonstrated for seasonal (Robertson et al. 2004;
Hagedorn et al. 2005) and medium range (Hamill 2012) fore-
casting. Extended logistic regression (Wilks 2009) has previ-
ously been applied to three models from the WWRP/WCRP
Subseasonal to Seasonal (S2S) project database (Vitart et al.
2012, 2017) with forecast-start dates on Mondays, to construct
probabilistic tercile-category forecasts of weekly and week-3–4
precipitation (Vigaud et al. 2017b,a; Robertson et al. 2019),
and temperature (Vigaud et al. 2019b). In these studies, the re-
gression parameters were fitted separately at each gridpoint and
lead time (from week 1 to 4) for the three models’ ensemble-
mean reforecasts following a leave-one-year-out approach.
The fitted model was then used to produce tercile-category
forecast probabilities for each model that were then averaged
across models with equal weighting to form a multimodel en-
semble (MME) probabilistic forecast. Subseasonal reforecast
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ensembles generally contain fewer ensemble members than in
the seasonal forecasting case, so a straightforward counting of
ensemble members exceeding a chosen threshold can lead to
large errors, further motivating the regression approach based
on the models’ ensemble means; Tippett et al. (2007) have
shown that regression models outperform counting estimates
in the seasonal forecasting context, especially for small ensem-
ble size. Logistic regression provides forecast probabilities
directly, without the need to assume a parametric form for the
forecast distribution.

In this paper, we expand the use of the extended logistic re-
gression (ELR) for subseasonal forecasting to create a system
for real-timemultimodel subseasonal probabilistic forecasts of
precipitation and temperature based on models available in
real time from the Subseasonal Experiment “SubX” Project
(Pegion et al. 2019) via the IRI Data Library. The intent is to
further document the performance of ELR calibration and
multimodel combination of subseasonal forecasts, and to illus-
trate the real-time forecasts from such a model.

The models and datasets are described in section 2, fol-
lowed by the methodology in section 3. The results are pre-
sented in section 4, including an assessment of reforecast skill
and an example real-time forecast, which is interpreted in
terms of concurrent MJO and ENSO conditions. The paper
concludes with a summary and conclusions in section 5.

2. Data and models

This paper makes use of the Subseasonal Experiment
“SubX” Project (Pegion et al. 2019) database, which provides
public access to 17 years of historical reforecasts (1999–2016),
plus several years of real-time forecasts from seven U.S. and
Canadian modeling groups.

Three general circulation models (GCMs) from SubX were
selected, each having reforecasts for the period 1999–2016,
and real-time forecasts from August 2017 to the present,
initialized on Wednesdays. Only three SubX models have
common Wednesday “start dates,” which facilitates the con-
struction of the MME combination used here. The SubX pro-
tocol (Pegion et al. 2019) encouraged forecast initialization on
Wednesdays for operational relevance to NOAA Climate
Prediction Center (CPC) which issues week-3–4 forecasts on
Fridays. The three models are as follows: National Centers
for Environmental Prediction (NCEP) Climate Forecast Sys-
tem, version 2 (CFSv2) (Saha et al. 2014), the NCEP Environ-
mental Modeling Center Global Ensemble Forecast System
(GEFSv12) (Zhou et al. 2016, 2017; Zhu et al. 2018), and the
National Oceanic and Atmospheric Administration (NOAA),
Earth System Research Laboratory (ESRL) Flow-Following
Icosahedral Model (FIM; Sun et al. 2018a,b). The FIM and
CFSv2 models are coupled atmosphere–ocean GCMs with prog-
nostic sea ice models, while the GEFSv12 is an uncoupled atmo-
spheric GCM with a prescribed observed estimates of sea
surface temperatures (SST) and sea ice concentrations (Zhu
et al. 2018). The FIM and CFSv2 reforecast ensembles each con-
tain 4 ensemble members, while the GEFSv12 has 11 members;
the real-time forecast ensemble sizes are 4, 16, and 31,

respectively. All SubX model data are provided on a uniform
183 18 latitude–longitude grid.

Observational precipitation data are taken from the 1996–
present Global Precipitation Climatology Project (GPCP)
daily precipitation with 18 resolution globally, derived from
station observations and satellite measurements (Huffman
et al. 2001). For temperature, we use CPC Global Unified
Temperature daily surface temperature estimates available
from 1979 to the present on a 0.58 grid (land only), averaged
onto the SubX 18 grid. All datasets were obtained via the IRI
Data Library.

3. Calibration and multimodel combination methodology

Forecast calibration of each GCM is based on extended lo-
gistic regression (ELR). Distributional regression is well
suited to probability forecasting (i.e., when the predictand is a
probability of cumulative exceedance rather than a measur-
able physical quantity) allowing the conditional distribution
of a response variable to be derived given a set of explanatory
predictors. In this context, logistic regression is extended to
produce the cumulative probability p of not exceeding the ob-
served climatological quantile value q:

p 5 Pr{V # q},

by including the observed climatological quantile q as a sec-
ond explanatory variable, in addition to the model-forecast
ensemble mean xens :

ln
p

1 2 p

( )
5 f (xens ) 1 g(q): (1)

Following Vigaud et al. (2017b, 2019b), we train such a model
for each GCM at every grid point, start date and lead time
(weekly or biweekly), using leave-one-year-out cross-validation
over the 1999–2016 reforecast period, by regressing ensemble
mean precipitation or temperature xens against the tercile
quantiles of the observations q. Note that xens is not expressed
as an anomaly, while the observed climatological quantile value
q varies by calendar day and geographical location, expressing
the climatology; it is included as a second predictor variable to
ensure consistent results for different values of q (Wilks 2009).
The tercile probabilities of the left-out year are then forecast,
and the MME probabilities are constructed by simple averag-
ing of the three individual forecast probabilities. Forecasts and
reforecasts are produced for both weekly averages, as well as
for week-3–4 biweekly averages, of precipitation and tempera-
ture. For forecasts of weekly averages, the climatological ob-
served tercile categories are computed from the reforecast
years following a leave-one year-out methodology, and over
3-week windows formed by the forecast target week and a
week either side; a 6-week window is used for week-3–4 fore-
casts. The model is trained under cross validation using the re-
maining 17 reforecast years and these same 3-forecast sample
windows; the training set thus contains 17 3 3 5 51 samples
(Vigaud et al. 2017b). For precipitation, a “dry mask” is used,
such that the forecasts are only produced when and where the
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33rd percentile of the observed climatology is nonzero (see
Fig. 9a below for an example).

We follow the definitions of forecast weeks used by NOAA
CPC, with each forecast week beginning on a Saturday and
with the forecast issued one day before on the Friday. For our
SubX forecasts initialized on Wednesdays, this means that
week 1 is defined to be days 4–10 of the forecast. Weeks 2–4
correspond to days 11–17, 18–24, and 25–31, respectively, and
weeks 3–4 to days 18–31. Note that these target window time
ranges correspond to slightly longer lead times than those de-
fined by Vigaud et al. (2017b, 2019b).

The ranked probability skill score (RPSS) has been
widely used to describe the quality of categorical probabilis-
tic forecasts and expresses the amount of error in the fore-
cast probabilities, compared to categorical climatological
probabilities (0.33 for terciles); it is a generalization of the
Brier skill score to multiple categories which penalizes fore-
casts more if the category with the highest forecast probabil-
ity is not adjacent to the observed one (Weigel et al. 2007).
RPSS is used to measure the skill of the ELR-calibrated
multimodel reforecasts under cross-validation. Each year of
the 1999–2016 reforecast set was withheld for verification in
turn, with the tercile categories and the ELR parameters de-
termined from the remaining 17 years. The RPSS maps are
computed for all Wednesday reforecasts starts in a 3-month
period. This yields a sample size of about 12 starts per year
over 18 years, thus about 216. RPSS is computed relative
to a reference of climatological forecast probabilities of
(0.33, 0.33, 0.33), so that positive RPSS corresponds to ex-
ceeding the performance of assigning equiprobable forecast
outcomes.

It should be noted, following Vigaud et al. (2017b, 2019b),
that the tercile breaks include seasonality, so that the fore-
casts indicate the probability of conditions being below, near,
or above the climatology normal for the forecast 1- or 2-week
target period. This follows the conventional seasonal forecast-
ing practice, in contrast to weather forecasts which are usually
expressed as total fields.

4. Results

a. Reforecast skill

Seasonally averaged maps of RPSS for week-3–4 MME
precipitation are shown in Fig. 1, for all reforecasts initial-
ized in the corresponding season (1999–2016). Skill is largest
in the tropics and subtropics and varies between regions
and seasons, consistent with previous subseasonal (Li and
Robertson 2015; Vigaud et al. 2017b,a, 2019a) and seasonal
(e.g., Robertson et al. 2004; Barnston et al. 2010) predict-
ability studies. Relatively few grid points exhibit negative
RPSS (blue shading), and large negative RPSS values are
rare (less that 20.05; dark blue). Large negative RPSS is an
indication of miscalibration, and thus their absence indi-
cates that there are no gross miscalibration issues. Positive
RPSS values reach 0.1 to 0.2. It can be shown (Tippett et al.
2010) that in the idealized case of well-calibrated normally
distributed forecasts:

RPSS ; 1 2
���������
1 2 r2

√
, (2)

where r is the anomaly correlation, indicating that an anomaly
correlation value of 0.4 equates to an RPSS of 0.083.
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 120°W   60°W    0°    60°E  120°E 

  30°S 

   0°  

  30°N 

  60°N 

-0.1   0  0.1  0.2  0.3  0.4

FIG. 1. Ranked probability skill score (RPSS) for week-3–4 MME precipitation reforecasts 1999–2016, stratified by
season: (a) March–May (MAM), (b) June–August (JJA), (c) September–November (SON), and (d) December–
February (DJF). The boxes used for the spatial averages in Fig. 2 are shown in (a).
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For reforecasts initialized in boreal spring (Fig. 1a), there is
appreciable week-3–4 precipitation skill over northeast South
America and around Uruguay, the Greater Horn of Africa,
southwest and South Asia, and over Southeast Asia. For bo-
real summer reforecasts (Fig. 1b), skill is found over Central
America and the Caribbean, Amazonia, parts of the Sahel,
and South and Southeast Asia. During boreal fall (Fig. 1c),
there is again high skill over Central America and the Carib-
bean, Northern, northeast and southeast South America, with

high skill levels across much of the Sahel, and central and east
Africa, Southeast Asia, and eastern Australia. During boreal
winter (Fig. 1d), the highest skill levels are found over north-
ern South America and parts of the Maritime Continent, with
positive skill extending over large parts of sub-Sahelian and
southern Africa, parts of southwest Asia, central Eurasia and
China, as well as some parts of North America and Europe.

The skills of the individual models are compared with the
MME in Fig. 2, using spatially averaged RPSS over four regions:

FIG. 2. Regionally averaged week-3–4 MME precipitation RPSS over land points stratified by season, for each
model and the MME. (a) Indonesian region (128S–48N, 908–1508E), (b) South Asia (58–308N, 608–908E), (c) East
Africa (58S–188N, 328–508E), and (d) northern South America (158S–58N, 658–358W). The 0.01 RPSS value that corre-
sponds approximately to the 5% significance threshold level is indicated by a horizontal line.
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the Maritime Continent (Indonesia), South Asia, East Africa,
and northern South America. Statistical significance of these re-
gional averages is estimated using the following rule of thumb.
The threshold for anomaly correlation significance at the 5%
level can be approximate by 2/

���
N

√
, whereN is the number of de-

grees of freedom (DelSole and Tippett 2022). Substituting this
expression for r into the approximation in Eq. (2), yields

RPSS5% 5 1 2

���������
N 2 4
N

√
: (3)

For the 3-month season calculations of RPSS from the hind-
casts 1999–2016, N ’ 12 3 18 5 216 assuming independent
weekly issued reforecasts, which yields RPSS5% ’ 0.01.

The MME spatially averaged skill exceeds that of any of
the individual models in all four regions and in all seasons and
is statistically different from zero in all four regions. The high-
est skill levels are found over the Indonesian region in boreal
summer and fall, dipping over boreal winter and spring, mir-
roring the seasonal evolution of seasonal forecast skill there,
which is controlled by characteristics of the Maritime Conti-
nent monsoon (e.g., Robertson et al. 2011). The individual
models have no skill during boreal winter and spring over
Indonesia yet the multimodel combination recovers some
skill. Multimodel precipitation skill is also substantial over
tropical South America in all seasons, and over East Africa
except in JJA; it is lower though still statistically significant
over South Asia, except in DJF.

These results provide additional evidence that multimodel
combination is an effective means of boosting the skill of sub-
seasonal forecasts, as has been demonstrated in many studies

on the seasonal forecasting time scale (e.g., Robertson et al.
2004; Hagedorn et al. 2005), and confirms the results of
Vigaud et al. (2017b,a) who used the S2S project models.
However, there is implicitly a larger ensemble size in the
MME (4 1 11 1 4 members), so the improved skill could be
due both to the use of multiple models and more members.

Turning to temperature, maps of the RPSS week-3–4 cross-
validated reforecast skill of the MME by season are plotted in
Fig. 3. Skill levels are generally much higher than for precipi-
tation, consistent with higher persistence of the thermody-
namic field, and with the presence of the anthropogenic
warming trend, and confirm previous findings on the subsea-
sonal scale (Wang and Robertson 2019; Vigaud et al. 2019b).
As in the case of precipitation, the temperature skill is largely
nonnegative, indicative that there are no gross miscalibration
issues; however, there are some contiguous areas of small neg-
ative RPSS such as over Europe in MAM. Figure 4 shows the
same regional averages in Fig. 2, for the three individual mod-
els and MME. Again, in all four regions and in all four sea-
sons, the MME is always more skillful than any individual
model. Individual model temperature skills are always
positive.

While our focus is on biweekly week-3–4 averages, Fig. 5
shows the RPSS for individual weeks 1, 2, 3, and 4, for both
precipitation (left) and temperature (right), averaged over the
Indonesian region. The expected monotonic decrease in
weekly precipitation skill is clearly evident from week 1 to
week 4. While this decrease is also seen in temperature in JJA
and SON}the seasons with the highest precipitation skill}it
is less evident in DJF and MAM between weeks 2 and 4,
which may reflect the stronger role of temperature persistence

a) RPSS Week 3-4 T2m MAM
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c) RPSS Week 3-4 T2m SON
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FIG. 3. Ranked probability skill score (RPSS) for week-3–4 MME 2-m temperature, stratified by season. Details as in
Fig. 1. The boxes used for the spatial averages in Fig. 4 are shown in (a).
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or the trend during DJF and MAM when rainfall predictabil-
ity is low. The other notable feature of Fig. 5 is the higher skill
of the biweekly week-3–4 average compared to the week 3, in
all seasons and for both variables. The longer 2-week averag-
ing period can be expected to enhance signals that persist be-
yond a week, such as those associated with SST and MJO
forcing, and to damp daily weather noise more than an in a
weekly average. The resulting increase in the signal-to-noise
ratio in the biweekly average in Fig. 5 is seen to outweigh the
reduction in signal between the week-3 and week-4 weekly
averages.

Reliability diagrams are plotted in Fig. 6, for both variables,
pooling the reforecasts over all tropical (blue curves) and extra-
tropical land grid points (red curves), for each tercile category.
Tropical precipitation exhibits a high degree of reliability (the
curves fall along the diagonal), as well as sharpness (the curves
extend over a significant range of forecast probabilities); this
latter attribute is clear in the forecast histograms for the below-
normal and above-normal categories, as is typical in seasonal
precipitation forecasts (Barnston et al. 2010). Extratropical pre-
cipitation, exhibits much less sharpness and is also less reliable,
as expected from the RPSS maps. The temperature reforecasts

FIG. 4. Regionally averaged week-3–4 MME 2-m temperature RPSS over land points. Details as in Fig. 2.
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are considerably sharper than for precipitation, especially in
the extratropics, and are generally reliable, except for higher
probabilities of above-normal temperature which are overcon-
fident (a forecast probability of 0.6 verifies in only 40% of
cases). Unlike in the case of precipitation, near-normal temper-
ature forecasts are both reliable and sharper.

b. Probabilistic forecasts in real time

The IRI has been issuing calibrated global probabilistic
forecasts of biweekly precipitation based on SubX experimen-
tally in real time every Friday since August 2018.1 The regres-
sion parameters for the real-time forecasts are estimated
using all the reforecast years 1999–2016 (no cross validation).
Figure 7 shows an example of an MME forecast of precipitation
and temperature in terciles format, issued in real time on
29 October 2021, for the 13–26 November 2021 week-3–4 pe-
riod. This particular forecast was one of the more skillful ones
and was thus chosen for illustration.

The forecast maps (Figs. 7a,c) show the probability of the
dominant tercile category}the forecasted category with the
highest probability}whenever that exceeds 35%. White areas
on the maps correspond to grid points where the MME
forecast does not deviate (within 2%) from climatological
equal-odds probabilities. Figures 7b and 7d show the observed

percentile of the biweekly average, computed over the 1999–2016
period, obtained by ranking the observed biweekly average of
precipitation and temperature against the 18 reforecast years,
providing an indication how anomalous the 13–26 November
2021 conditions were compared with past 13–26 November
periods.2

Below-normal precipitation is the dominant category of the
forecast (Fig. 7a) over equatorial and eastern Africa, Uruguay,
Chile, Colombia, and Sumatra, as well as broadly over Asia
and the southern United States. The above-normal category
dominant over much of northeastern South America, and parts
of Southeast Asia and Australia. This general pattern of fore-
casted categories matches fairly well with the observed ones
(Fig. 7b) over South America, eastern Africa and Sumatra,
while the dry forecasts over central equatorial Africa and wet
forecast over northern Australia are not matched by dry ob-
served percentiles.

The forecasted dominant category of temperature (Fig. 7c)
also matches the observed category (Fig. 7d) in some areas,
but not others, with near-normal temperatures indicated as
most likely over much of the Northern Hemisphere land.
Above-normal temperatures are forecasted over much of equa-
torial and southern Africa, western/southern South America,

FIG. 5. Regionally averagedMMERPSS over the Indonesian region for individual weeks 1, 2, 3, and 4, and for weeks 3–4.
(a) Precipitation and (b) 2-m temperature.

1 https://iridl.ldeo.columbia.edu/maproom/Global/ForecastsS2S/
precip_subx.html.

2 More precisely, the 6-week period centered on 13–26 November,
1999–2016 is used to define the reforecast climatology, to match that
used in the ELR training. This results in less-noisy observed percen-
tile maps than 2-week periods.
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and parts of the Maritime Continent, with below-normal
temperatures over much of Brazil, South/Southeast Asia,
and Southwest Australia.

Verification of the single case in Fig. 7 provides intuition on
the forecast’s quality and interpretation in terms of the pat-
terns of S2S climate drivers discussed for precipitation in the
next subsection. However, to set the performance of this

particular forecast in context, the time series of RPSS inte-
grated spatially over land 608N–608S, is plotted in Fig. 8, with
the score for the 29 October 2021 highlighted. Just as RPSS is
typically used to sum the rank probability score (RPS) over
time (normalized by its climatology, e.g., Robertson et al.
2004), the summation can instead be made over grid points in
space for a specific date in time, to illustrate the time

FIG. 6. Reliability diagrams for week-3–4 MME reforecasts [(a)–(c) precipitation, (d)–(f) 2-m temperature] pooled over the whole cal-
endar year, and over all tropical land points (308S–308N; blue), and all extratropical land points (red), for reforecast probabilities of the
(left) below-normal, (center) near-normal, and (right) above-normal tercile categories. The histograms show the frequency of reforecasts
in each 0.1 probability bin (the 10 bin centers are labeled), with the ordinate scaled from 0% to 100%.
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evolution of the skill of probabilistic forecasts. Though not an
outlier, this particular forecast is seen to be one of the more
globally skillful over real-time forecasting period, particularly
for precipitation.

c. MJO and ENSO impacts on the precipitation forecast

A moderate MJO event occurred in November 2021, pro-
pagating from phase 1 (Wheeler and Hendon 2004) on the
forecast initialization date (27 October 2021) and persisting
in MJO phase 4 during the 2-week forecast target period,
13–26 November 2021, with an amplitude of about one stan-
dard deviation (Fig. 9c). During phase 4, MJO convection is
located over the Maritime Continent and western Indian
Ocean, with anomalously dry conditions over the eastern
Indian Ocean, tropical Africa, central America, and north-
ern South America (Fig. 9b). Many of these features are
consistent with the precipitation forecast map (Fig. 7a),
here plotted over ocean as well as land to aid physical
interpretation (Fig. 9a).3 However, the MJO state cannot
account for the wet forecast over northern South America,

over northern Australia, nor the dryness forecasted over
Uruguay.

November 2021 was also characterized by a moderate La
Niña event (Fig. 10a), that also strongly impacted the week-3–4
forecast. A map of the correlations between the Niño-3.4 index
and November precipitation anomalies (Fig. 10b) also resem-
bles many aspects of the forecast, with negative correlations
over the Maritime Continent, northern Australia, the eastern
Indian Ocean, as well as over northern South America. Positive
correlations extend over the tropical Pacific, the Caribbean, and
the western Indian Ocean and East Africa. Figures 9 and 10
point to the importance of the combined impacts of both the
MJO and ENSO on the week-3–4 forecast: over much of the
tropics the impacts of both phenomena are seen to reinforce
each other, while opposing each other over South America and
northern Australia where La Niña’s impact dominates.

d. Flexible probability format forecasts

While tercile categories are the most commonly used pre-
sentation format for probabilistic seasonal climate forecasts
and which we have used for our subseasonal forecasts too,
probability of exceedances for specific user-chosen thresholds
are often more relevant to particular forecast users (Barnston

FIG. 7. Real-time week-3–4 MME probability forecast maps for the 13–26 Nov 2021 period, issued 29 Oct 2021, for (a) precipitation and
(c) 2-m temperature. (b),(d) The observed percentile as verification. See text for further details. Plotted from the IRI Data Library.

3 Unlike in Fig. 7a, the 35%–40% probability bins in Fig. 9a are
also shaded in color to highlight the dry mask in this figure.
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and Tippett 2014). Extended logistic regression enables the
full forecast distribution to be derived and plotted at any grid-
point. Figure 11 provides an example of the 13–26 November
2021 forecast for a location over Indonesia, showing the prob-
ability of exceedance (top) and the probability distribution
(bottom), for both precipitation and temperature. These graphs
can be plotted interactively via the online “Flexible Forecast”
map rooms4 by clicking any land point on the map. Details of
the computations are provided in the appendix.

The forecast at this location is wetter and warmer than the
climatology, so that both forecast distributions are shifted to
the right of their climatological counterparts. The mode of the
precipitation forecast distribution is more than 10 mm week21

wetter than the climatology. The precipitation forecast distri-
bution is visibly narrower than the precipitation climatological
distribution (i.e., more confident), while the temperature fore-
cast does not reduce the climatological uncertainty, while
shifting it by about 18C to the right. This may be associated
with warmer SSTs around Indonesia during November 2021
(Fig. 10a). Figure 11 reflects the Gaussian nature of the tem-
perature distributions, while the biweekly precipitation distri-
butions are truncated at zero and asymmetrical; the latter
resemble truncated Gaussian distributions or gamma distribu-
tions with large shape parameters.

5. Summary and conclusions

A global multimodel probabilistic subseasonal forecast sys-
tem for precipitation and near-surface temperature has been

FIG. 8. Time series of RPSS score for the real-time week-3–4 MME forecasts issued
2 Oct 2020–2 Jun 2022 for (a) precipitation and (b) temperature. The forecast issue date is plot-
ted on the abscissa with RPSS integrated over land points, 608S–608N on the ordinate (scale
differs between panels). The 29 Oct 2021 forecast is highlighted. Colors are only indicative and
are relative in each panel.

4 https://iridl.ldeo.columbia.edu/maproom/Global/ForecastsS2S/
index.html.
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developed based on three NOAA ensemble prediction sys-
tems that make their forecasts available publicly in real time,
as part of the Subseasonal Experiment (SubX). The Satur-
day–Friday weekly and biweekly time-averaged raw model
ensemble means of precipitation and temperature of each
model are individually calibrated against historical data at
each gridpoint using extended logistic regression, prior to
forming an equal-weighted MME. The system has been im-
plemented at IRI and has been run on a weekly basis, every
Thursday, since mid-2018, and served publicly through a suite
of virtual map rooms5 available in the IRI Data Library
where weekly forecasts from week 1 to 4 can also be accessed.
Reforecast skill of weeks 3–4 is assessed in terms of the cross-
validated RPSS and reliability.

The multimodel reforecasts are shown to be well-calibrated
for both variables. Precipitation is moderately skillful in many
tropical land regions, including Latin America, sub-Saharan
Africa, and Southeast Asia, and over subtropical South
America, Africa, and Australia in some seasons (Fig. 1). Near
surface temperature skill is considerably higher than for pre-
cipitation and it extends into the extratropics as well (Fig. 3).
The multimodel combination RPSS skill of both precipitation
and temperature is shown to exceed that of any of the constit-
uent models for spatially averaged RPSS over the Maritime
Continent, South Asia, South America, and East Africa, in all
seasons (Figs. 2 and 4). The week-3–4 MME spatially aver-
aged RPSS over the Maritime Continent is shown to exceed

that of the week-3 forecast in all seasons (Fig. 5); the longer
2-week averaging period will act to enhance signals that persist
beyond a week, such as those associated with SST and MJO
forcing, and to damp daily weather noise more than an in a
weekly average, both acting to enhance the signal-to-noise
ratio. On average, week-3–4 tropical precipitation and tem-
perature globally exhibit a high degree of reliability and
sharpness, while extratropical precipitation sharpness is poor
(Fig. 6). The temperature reforecasts are considerably sharper
than for precipitation, especially in the extratropics, and are
generally reliable, except for higher probabilities of above-
normal temperature which are overconfident. Unlike in the
case of precipitation, near-normal temperature forecasts are
both reliable and sharper; this finding is unexpected from sea-
sonal forecasting and deserves further research.

An example real-time week-3–4 forecast for 13–26 November
2021 is presented in terciles format (Fig. 7) and shown to bear
the hallmarks of a moderate Madden–Julian oscillation together
with a moderate La Niña. Active MJO convection conditions
were observed over the Maritime Continent and western Indian
Ocean during 13–26 November 2021 (Fig. 9a), with anoma-
lously dry conditions inferred over the eastern Indian Ocean,
tropical Africa, central America and northern South America
(Fig. 9b). Many of these features are consistent with the precipi-
tation forecast map (Fig. 7a), with the exception of much of
South America and northern Australia. However, November
2021 was also characterized by a moderate La Niña event
(Fig. 10a), whose canonical impacts (Fig. 10b) also resemble the
week-3–4 forecast, with positive precipitation anomalies ex-
pected over the Maritime Continent, northern Australia, the
eastern Indian Ocean, as well as much of northern South

FIG. 9. MJO diagnostics. (a) Precipitation forecast map as in Fig. 7a, but showing both land and ocean areas;
(b) MJO phase-4 anomaly composite of precipitation constructed over the October–December (OND) season,
1996–2021, using GPCP precipitation; and (c) observed bivariate Wheeler–Hendon real-time multivariate MJO
(RMM) index from the forecast initialization date (27 Oct 2021) to the end of the week-3–4 forecast period
(13–26 Nov 2021), with MJO phases 1–4 indicated as P1–P4. The forecast dry mask is indicated in white in (a). Plotted
from the IRI Data Library.

5 https://iridl.ldeo.columbia.edu/maproom/Global/ForecastsS2S/
index.html.
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America, and negative ones over the Caribbean and the western
Indian Ocean, east Africa and in particular over southeast South
America. These MJO and ENSO teleconnections are construc-
tive over many tropical land regions where the week-3–4 fore-
cast is sharp (Maritime Continent, eastern Africa, and the
Caribbean), while they oppose each other over South America
where La Niña’s impact appears to dominate the forecast, em-
phasizing the importance of the impact of SST anomalies on
subseasonal forecasts. This particular week-3–4 precipitation
forecast example was one of the most skillful over the 2-yr pe-
riod of real-time forecasts analyzed is terms of globally averaged
RPSS (Fig. 8); the analysis in section 4c helps understand why, il-
lustrating the potential for skillful subseasonal “windows of op-
portunity” when multiple sources of S2S predictability are active
(Mariotti et al. 2020). The well-calibrated probabilistic subseaso-
nal forecast system developed here is designed to automatically
provide forecast probability distributions that deviate from their
climatological expectations when such spatiotemporal windows
opportunity arise (Fig. 11).

However, further work is required to confirm the generality
of this analysis of a single case regarding the roles of MJO

and ENSO, and to investigate interactions between additional
sources of S2S predictability (Muñoz et al. 2015, 2016) which
also include the quasi-biennial oscillation and sudden strato-
spheric warmings (Domeisen et al. 2020a,b), and land surface
interactions (Dirmeyer et al. 2019), among others. More work
is also required to further develop subseasonal forecast proc-
essing techniques, and to include additional skillful models
beyond the three chosen here. It is hoped that the availability
of the IRI SubX-based forecast map rooms described in this
paper will aid such research, and further the applications of
subseasonal forecasting.
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APPENDIX

Flexible Forecast Methodology

The logistic regression Eq. (1) for the forecast probability
p may be written as

p 5
ef

1 1 ef
, (A1)

where

FIG. 11. Forecast probability of exceedances and probability distributions for a point located over East Timor, Indonesia, for (a) precipita-
tion and (b) 2-m temperature, for the 13–26 Nov 2021 period, issued 29 Oct 2021. The historical distributions (1999–2016) are indicated as
dotted curves. Plotted from the IRI Data Library.
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f 5 b0 1 b1xens 1 b2q: (A2)

Once the regression coefficients b have been estimated
from reforecasts, the forecast probability p can be obtained
for any historical percentile P of the observed climatology.
To obtain the corresponding climatological value of q, the
regression model is fit to the reforecast data interval but
without including the model’s ensemble mean predictor,
again using tercile categories:

P 5
eF

1 1 eF
, (A3)

where
F 5 B0 1 B2q: (A4)

Rearranging for q then yields

q 5
1
B2

ln
P

(1 2 P)exp(B0)
[ ]

: (A5)

Substituting q back into (A2), we then arrive at the forecast
probability p as a function of any historical percentile P:

p 5

exp b0 1 b1xens 1
b2
B2

ln(P)
[ ]

exp
b2
B2

[ln(1 2 P) 1 B0]
{ }

1 exp b0 1 b1xens 1
b2
B2

ln(P)
[ ] :

(A6)

To create the probability of exceedance curves in Fig. 11, the
quantile value for each climatological percentile P (500 samples
from zero to one) is calculated from (A5) yielding the climato-
logical exceedances curve. The forecast probability curve is
then derived from (A6) as a function of P and the regression
parameters.

To plot the probability density function (pdf), we again
begin with p, which always lies between 0 and 1. We intro-
duce an intermediary independent variable (sv) that both
the pdf and q depends on isomorphically:

sv 5 ln
p

1 2 p

( )
: (A7)

Substituting sv into (A5) yields

q 5
1
B0

(sv 2 B), (A8)

where
B 5 B0 for climatology, and

5 b0 1 b1xens for the forecast:

The pdf is then given by

dp
dq

5 B2
dp
dsv

: (A9)
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